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Abstract: Anthocyanins, a class of water-soluble flavonoid pigments, are widely distributed in
higher plants and are responsible for the red, blue, and purple coloration of many fruits,
vegetables, and grains. In recent years, growing attention has been paid to their dual biological
significance in plants and humans. In plants, anthocyanins play critical roles in photoprotection,
stress resistance, and defense against pathogens. In humans, they exhibit potent antioxidant,
anti-inflammatory, and metabolic regulatory activities, contributing to the prevention of chronic
diseases such as cardiovascular disorders, diabetes, and cancer. These functions are largely
mediated through the modulation of key cellular pathways, including NF-xB (Nuclear Factor
kappa-light-chain-enhancer of activated B cells), MAPK (Mitogen-Activated Protein Kinase),
and PPAR-y (Peroxisome Proliferator-Activated Receptor gamma). Anthocyanin biosynthesis
is tightly regulated by the MYB-bHLH-WD40 (MBW) transcriptional complex, in which
R2R3-MYB proteins provide DNA-binding specificity, bHLH factors enhance transcriptional
activation, and WD40 proteins serve as scaffolds to stabilize the complex. The activity of this
MBW complex is further influenced by both genetic and environmental factors. However, the
practical application of anthocyanins is limited by low stability and bioavailability. Emerging
encapsulation technologies such as nano-formulation in biopolymer matrices have shown
promise in overcoming these limitations. This review comprehensively summarizes recent
advances in the biosynthesis, metabolic regulation, and physiological functions of anthocyanins
in higher plants, with a particular focus on their molecular mechanisms and potential
applications in health-promoting functional foods and plant breeding. Understanding the
regulatory networks of anthocyanin biosynthesis and their functional implications provides
valuable insight into the development of anthocyanin-enriched crops and nutraceuticals.
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1. Introduction

Anthocyanins are a widely distributed class of plant pigments classified within
the flavonoid family. Structurally, they are characterized by a 2-phenylbenzopyran
backbone with diverse substituent groups and are commonly found in glycosylated
forms [1]. The abundance and compositional profile of anthocyanins vary
considerably among plant species and are influenced by the timing of harvest. Within
individual plants, anthocyanins typically accumulate in substantial quantities across
various tissues, including leaves, flowers, fruits, seeds, stems, epidermis, and other
organs. There are over 600 types of anthocyanins in nature [2], which can be classified
into many types based on modifications, such as substituent groups on the B ring, type
and number of conjugated sugar and the presence or absence of an acyl group.
Pelargonidin, cyanidin, delphinidin, peonidin, petunidin and malvidin are six main
anthocyanins in higher plants. Peonidin is formed by the methylation of cyanidin,
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while petunia and malvidin are formed by the methylation of delphinidin with different
degrees.

Anthocyanins are synthesized in the cytoplasm. The biosynthesis of anthocyanins
goes through a series of complicated steps that contain many enzymes (PAL, CHS,
CHI, F3'H, F3'5'H, DFR and ANS, et al.). Also, there are many factors that can affect
this process, including transcription factors and environmental factors. The vacuoles
of plants are the storage sites of anthocyanins, and anthocyanins are transported to
vacuoles after biosynthesis in plant cells [3].

As the most abundant water-soluble pigments in the plant kingdom, anthocyanins
are responsible for the vivid red, blue, and purple hues in many fruits, vegetables, and
grains. Recent research has highlighted their significant health-promoting properties,
including potent antioxidant, anti-inflammatory, antidiabetic, anti-obesity, and
anticancer effects, which contribute to the prevention and management of chronic
diseases such as cardiovascular disease, diabetes, neurodegenerative disorders, and
certain cancers [4,5]. These benefits are largely attributed to their ability to modulate
key cellular signaling pathways, such as NF-kB and Nrf2 (Nuclear factor erythroid 2—
related factor 2), and to improve glucose and lipid metabolism by influencing gene
expression, including upregulation of PPAR-y [6].

In addition to their health effects in humans, anthocyanins play crucial
physiological roles in plants, providing protection against oxidative stress, UV
radiation, and pathogens, and contributing to plant adaptation and survival [5,7]. Their
vibrant coloration and safety profile have led to widespread use as natural colorants in
the food, pharmaceutical, and cosmetic industries, offering a safer alternative to
synthetic dyes [4,8].

However, the practical application of anthocyanins is challenged by their
structural instability and low bioavailability, prompting ongoing research into
stabilization and encapsulation techniques to enhance their efficacy in functional foods
and nutraceuticals [9,10]. Overall, anthocyanins represent a promising class of natural
compounds with diverse applications and substantial potential for improving both
human health and industrial product quality. Therefore, it is necessary for us to
understand the functions of anthocyanins to improve human health by producing
anthocyanin-rich food and medicine reasonably. To study anthocyanins biosynthesis
and metabolism and comprehend the regulatory factors that influence anthocyanins
content and the transport models of them can provide valuable information for the
study of secondary metabolites and the breeding of pathogen- and insect-resistant
varieties in higher plants.

2. Biosynthesis of Anthocyanins

2.1. Biosynthetic Pathway of Anthocyanins in Plants

Plant anthocyanins biosynthetic pathways and the involved enzymes were well
characterized in many previous studies. They are produced in the cytoplasm (Figure
1). Phenylalanine experiences a series of enzymatic reactions, and then is modified by
different glycosyltransferases, methyltransferase and acyltransferases and is
transported to vacuoles in the end. The biosynthesis pathway can be divided into three
stages according to the reaction process. The first stage is transformation of
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anthocyanins precursors; the second stage is flavonoid metabolism; the third stage is
anthocyanins production.
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Figure 1. Anthocyanins biosynthesis pathway.

In the first stage, phenylalanine, which is the most important precursor of
anthocyanin biosynthesis, is converted to trans-cinnamic acid by phenylalanine
ammonia lyase (PAL) in the cytoplasm primarily. It is then hydroxylated to form p-
coumaric acid to be p-coumaric acid by cinnamate 4-hydroxylase (C4H). Alternatively,
in some plant species, tyrosine can be converted to p-coumaric acid by tyrosine
ammonia lyase (TAL) [11]. Finally, p-coumaric acid is turned into p-coumaroyl-CoA
by 4-coumarate-CoA ligase (4CL). Another, acetic acid is converted by acetyl-CoA
ligase (ACL) and acetyl-CoA carboxylase (ACC) to malonyl-CoA [12].
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The second stage is the condensation of three molecules of malonyl-CoA and one
of p-coumaroyl-CoA to be chalcone, proceeds spontanecously at a low rate, but is
accelerated by the chalcone synthase (CHS) [13]. Chalcone is then isomerized to
naringenin by chalcone isomerase (CHI). Next, naringenin is converted to
dihydrokaempferol (DHK) by flavanone 3-hydroxylase (F3H). Flavonoid-3'-
hydroxylase (F3'H) and flavonoid-3'5"-hydroxylase (F3'5'H) hydroxylate at different
sites of DHK to form dihydroquercetin (DHQ) and dihydromyricetin (DHM) [14].
Differences in the hydroxylation of the B-ring confer different colors of anthocyanins.

In the last stage, dihydrokaempferol (DHK), dihydroquercetin (DHQ) and
dihydromyricetin (DHM) are reduced to colorless anthocyanins under the action of
dihydroflavonol-4-reductase (DFR), and then transformed to colored anthocyanins:
pelargonidin, cyanidin and delphinidin by anthocyanidin synthase [15-18]. However,
anthocyanins structures are inherently unstable and they exist in the form of
glycosylation. Pelargonidin, cyanidin and delphinidin usually combine with glucose
to be pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside and delphinidin 3-O-
glucoside by flavonoid-3-O-glucosyltransferase (UFGT). Post biosynthesis, then they
can be converted to the glucosides of malvidin, peonidin and petunidin respectively
by flavonoid-5-O-glucosyltransferase  (SGT), anthocyanidin-3-glucoside -
rhamnosyltransferase, acyltransferase (AT) and methyltransferase (MT) [19]. Recent
research demonstrates that glycosylation and acylation are not merely terminal steps
but occur alongside anthocyanin production, often overlapping with transport and
storage processes. These modifications are catalyzed by specific glycosyltransferases
and acyltransferases, which act on anthocyanidins as soon as they are formed, rather
than after the pathway is “complete” [20].

2.2. Functional Characterization of Key Structural Genes

The structural genes that encode key enzymes in the anthocyanins biosynthetic
pathway include CHS, CHI, F3H, F3'H, F3'5'H, DFR, ANS and UFGT (Table 1). CHS
is the first committed enzyme in the flavonoid pathway and is often induced by UV
light, pathogens, or salicylic acid in plants such as Malaysian ginger [21,22]. CHS and
CHI are pivotal early enzymes regulating anthocyanin accumulation and floral
pigmentation. Functional studies in species like Malus crabapple and Petunia hybrida
show that CHS expression levels correlate with flower color intensity [23,24]. CHS is
often encoded by small gene families with tissue- and stage-specific expression.

Table 1. Key structural genes involved in anthocyanin biosynthesis and their biological functions

Gene Encoded E Pri Functi Expression E le Speci Key
ncoded Enzyme rimary Function xample Species
name ¥ y Characteristics ple Sp References
Zingiber officinale [21-24]
. UV- and (Malaysian
Catal th tial st
CHS Chalcone synthase ) ata yzes. © ?m s ep pathogen- ginger), Malus
in flavonoid biosynthesis ; )
inducible crabapple, Petunia

hybrida
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CHI catalyzes the stereospecific isomerization of chalcone into naringenin.
Studies in Clivia miniata and Hosta ventricosa found multiple CHI isoforms, of which
only certain types (e.g., type I) are catalytically active [25,26]. CHI expression is
clevated in anthocyanin-rich tissues. Heterologous overexpression enhances
pigmentation, and CHI can rescue anthocyanin biosynthesis in Arabidopsis thaliana
mutants.

Further downstream, F3H hydroxylates the flavanone C-ring to form
dihydroflavonols. F3'H and F3'5'H hydroxylate flavanones/flavanols on the B-ring,
producing DHQ and DHM. F3H typically encodes 350-380 amino acids in two exons
[27]. RNAi-mediated silencing of F3H in strawberry suppressed expression by 70%
and significantly reduced anthocyanin levels [28]. In Centaurea cyanus, low F3H
activity explains white petal coloration [29].

DFR reduces dihydroflavonols to leucoanthocyanidins. In Arabidopsis,
overexpression of TaDFR (wheat) restores pigmentation in dfr mutants [30]. FpDFR
expression is higher in red fruits than white in Fragaria pentaphylla [31]. In poinsettia,
DFR expression is upregulated in red versus green bracts, and its overexpression
increases anthocyanin levels in Arabidopsis [32].

ANS (also called LDOX) catalyzes the final oxidation step to generate
anthocyanidins. It is a 2-ketoglutarate-dependent oxygenase [12]. In pomegranate,
lack of ANS (PgLDOX) transcript correlates with absence of anthocyanins[33]. In red
currant, pink/white coloration results from low ANS expression [34].

UFGT stabilizes anthocyanidins via glycosylation. Its expression strongly
correlates with anthocyanin content in red litchi pericarp, according to RT-PCR
analysis [35]. Glycosylation increases anthocyanin water solubility and chemical
stability, especially at neutral pH and during storage or processing. Glycosylated
anthocyanins are more resistant to degradation than aglycones, and the position/type
of glycosylation (e.g., C3 vs. C5) can further modulate stability and color expression
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[36-38]. Another structure, acylated anthocyanin dramatically enhances anthocyanin
stability against heat, light, pH changes, and oxidation. Acylated anthocyanins show
increased color retention, especially blue hues, due to intramolecular co-pigmentation
and m—m stacking, which protect the chromophore from hydration and chemical
breakdown [37,39,40]. The addition of acyl groups (e.g., malonyl, sinapoyl) to
anthocyanins is common in purple corn and other pigmented crops, which
dramatically increases pigment stability. Acylated anthocyanins form intramolecular
“sandwich-type” stacking, which protects the chromophore from hydration and
chemical breakdown, resulting in improved color retention under varying pH, light,
and temperature conditions [37,38,41,42].

Structural modifications (especially acylation and glycosylation) are being
harnessed to develop more stable, natural colorants and functional foods. These
modifications improve anthocyanin retention during processing, storage, and digestion,
expanding their use in food packaging, intelligent indicators, and health-promoting
products [39,41]. While glycosylation generally improves stability and absorption,
acylation can sometimes reduce intestinal uptake, potentially limiting systemic
bioactivity. However, both modifications help preserve antioxidant and anti-
inflammatory functions in the gut [37,38]. Most clinical studies use anthocyanin-rich
foods or extracts, but few directly compare structural variants. The low stability and
bioavailability of non-modified anthocyanins have limited their clinical translation.
Advances in structural modification and encapsulation are expected to improve
efficacy in future trials [37,38,43].

3. Transport Mechanisms of Anthocyanins

After biosynthesis in the cytoplasm, anthocyanins are transported into vacuoles
for storage, where they contribute to pigmentation, stress responses, and stability.
Current research has identified two major mechanisms underlying anthocyanin
sequestration: protein-mediated transport and vesicle-mediated trafficking.

3.1. Protein-Mediated Transport: GSTs, ABC, and MATE Transporters

One of the most extensively studied mechanisms for anthocyanin sequestration
involves the coordinated function of cytosolic glutathione S-transferases (GSTs) and
ATP-binding cassette (ABC) transporters, particularly those of the ABCC subfamily.
In this model, GSTs are proposed to bind anthocyanin glycosides in the cytosol and
facilitate their recognition by tonoplast-localized ABCC transporters [44,45]. These
transporters, such as AtABCC2 in Arabidopsis thaliana and VVABCCI1 in Vitis
vinifera, mediate the ATP-dependent translocation of anthocyanins like cyanidin 3-O-
glucoside into the vacuole. This process is often enhanced by the presence of reduced
glutathione (GSH), which may act as a co-substrate or contribute to transport
efficiency [46,47].

Functional studies across various plant species have supported this mechanism.
In cotton (Gossypium hirsutum), apple (Malus domestica), and tree peony (Paeonia
suffruticosa), specific phi-class GSTs (e.g., GhGSTF12, MdGSTF6, PsGSTF3) have
been identified as essential for anthocyanin accumulation. Gene silencing or mutation
leads to reduced pigment deposition, while transgenic overexpression enhances

67



Agriculture and Biology 2025, 1(1), 62-93.

pigmentation, indicating a conserved transport mechanism [48-51]. Additionally,
transcriptome and phylogenetic analyses in Vitis vinifera and Paeonia suffruticosa
show that GST expression correlates with anthocyanin content and developmental
stage, contributing to tissue-specific pigmentation [50,51]. Ligand docking and
mutagenesis studies show that anthocyanin and GSH bind closely within the
transporter, mutually enhancing each other's binding. The GST may deliver
anthocyanin (possibly as a non-covalent complex) to the ABC transporter, which then
co-transports anthocyanin and GSH into the vacuole[46,52—54]. While direct physical
interaction between GSTs and ABC transporters in vivo remains to be visualized,
functional studies strongly support a sequential handoff mechanism.

Another protein family involved in anthocyanin transport is the multidrug and
toxic compound extrusion (MATE) transporter family. MATE proteins typically use
the electrochemical proton (H") or sodium (Na*) gradients across the tonoplast to
facilitate anthocyanin uptake [55]. In grape (Vitis vinifera), VVAMI and VvVAM3 are
fruit-specific MATE transporters responsible for transporting partially acylated
anthocyanins [56]. Ectopic expression of VVAM3 in the Arabidopsis mutant pabl
restored wild-type pigmentation, and immunofluorescence analyses showed its
colocalization with anthocyanin-containing vesicles [57]. Further evidence comes
from carrot (Daucus carota), where DcMATE21 expression strongly correlates with
anthocyanin accumulation under various cultivars and stress conditions. Functional
assays confirm that DcMATE21 specifically binds and transports C3G [58,59].
Similarly, OsMATE34 in black rice and PhAMATE] in Petunia hybrida have been
shown to regulate anthocyanin accumulation in reproductive organs, further validating
the conserved role of MATE transporters [60,61].

3.2. Vesicle-Mediated Trafficking and Anthocyanic Vacuolar Inclusions

In addition to transporter-dependent mechanisms, vesicle-mediated trafficking
provides an alternative route for anthocyanin sequestration. In this model,
anthocyanins are first packaged into anthocyanin-containing vesicles (ACVs) in the
cytoplasm. These vesicles are then directed to perivacuolar compartments (PVCs) or
protein storage vacuoles (PSVs), with eventual fusion to the central vacuole via Golgi-
mediated trafficking [62]. Upon fusion, the vesicles may rupture, forming irregular,
membrane-less bodies known as anthocyanic vacuolar inclusions (AVIs), which are
considered essential for anthocyanin stabilization and compartmentalization [63].

4. The Regulation of Anthocyanin Biosynthesis

Transcription factors play a crucial role in the regulation of anthocyanin
biosynthesis. Current studies have identified several key transcription factors involved
in this process, including members of the MYB, MYC, bHLH, bZIP, and WD40
families. Among them, MYB, bHLH, and WD40 proteins can interact to form the
MYB-bHLH-WD40 (MBW) transcriptional complex, which either activates or
represses the expression of structural genes, thereby regulating anthocyanin
accumulation in higher plants [64—67]. In addition to genetic regulation,
environmental factors also significantly influence anthocyanin biosynthesis [68].
Numerous studies have demonstrated that external stimuli can modulate anthocyanin
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production by affecting enzyme activities and altering the expression of biosynthetic
and regulatory genes. Table 2 shows major transcription factors regulating
anthocyanin biosynthesis.

Table 2. Major transcription factors regulating anthocyanin biosynthesis

TF, Representatzve Regulatory Mechanism of Action = Example Species Key
Family  Genes/Proteins Role References
MYB MdMYBI, Activator or Forms MBW complex Primulina swinglei, [68-72]
PsMYBI repressor with bHLH and WD40;  Fagopyrum esculentum,
regulates structural gene  Zinnia elegans, Brassica
expression rapa, Litchi chinensis
bHLH MdbHLH3, Positive Enhances MYB activity =~ Malus domestica, [73,74]
DcTTS8 regulator and co-activates Dendrobium candidum
biosynthetic gene
promoters
WD40 RsTTGI, Stabilizing Stabilizes MBW Raphanus sativus, [75-79]
MATTG1 co-factor complex, essential for Platanus acerifolia,
efficient pigment apple, Myrica rubra,
accumulation pomegranate
bZIP  HY5, FvHYS Light- Modulates MYB Arabidopsis thaliana, [80]
responsive expression and/or Fragaria vesca
activator directly binds to

structural gene
promoters under light

4.1. The Major Transcription Factors of Anthocyanin Biosynthesis

Anthocyanin biosynthesis in plants is primarily regulated by a conserved
transcriptional complex consisting of R2R3-MYB, basic helix—loop-helix (bHLH),
and WD40-repeat (WDR) proteins, commonly referred to as the MBW complex.
These factors coordinate the spatiotemporal expression of structural genes in the
anthocyanin biosynthetic pathway, thereby controlling pigment accumulation in plant
tissues.

4.1.1. MYB Transcription Factors

R2R3-MYB transcription factors are key regulators of anthocyanin biosynthesis
and act as either activators or repressors. For instance, in Primulina swinglei, PsMYB1
has been identified as a positive regulator that activates anthocyanidin synthase (ANS)
expression and induces pigmentation in Nicotiana benthamiana leaves, especially
when co-expressed with a bHLH partner [69]. Similarly, FeR2R3-MYB from
Fagopyrum esculentum activates anthocyanin biosynthesis and also confers drought
tolerance, revealing its dual functional role [70]. Conversely, repressive MYBs such
as ZeMYB32 in Zinnia elegans suppress anthocyanin accumulation by disrupting
activator complexes [71]. In Brassica rapa, the R3-MYB BrMYBL2.1 interferes with
MBW complex formation, and allelic variation in this gene contributes to
pigmentation differences among cultivars [72]. Likewise, LcMYBx in Litchi chinensis
represses anthocyanin biosynthesis by competitively binding to bHLH partners [73].
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4.1.2. bHLH Transcription Factors

bHLH transcription factors serve as crucial cofactors in the MBW complex,
typically partnering with MY Bs to activate gene expression. Though bHLHs are often
broadly expressed, they are indispensable for efficient anthocyanin accumulation. In
apple (Malus domestica), MdbHLH3 enhances anthocyanin content at low
temperatures by activating MdDFR, MdUFGT, and MdMYBI expression [74]. In
Dendrobium candidum, DcTTS directly activates late biosynthetic genes, promoting
pigment accumulation [75].

4.1.3. WD40-Repeat Proteins

WDA40 proteins provide structural support within the MBW complex. In radish
(Raphanus sativus), RsTTG1 interacts with RsTT8 and RsMYBI1 to activate CHS and
DFR promoters [76]. In Platanus acerifolia, PaTTG1.1 and PaTTGI1.2 restore
anthocyanin production in Arabidopsis thaliana ttgl mutants and promote expression
of flavonoid biosynthetic genes [77]. In apple, MdTTG1 promotes anthocyanin
accumulation [78]; MrWD40-1 in Myrica rubra and PgWD40 in pomegranate also
interact with MYB and bHLH proteins to regulate pigment biosynthesis [79,81].

4.1.4. MBW Complex in Diverse Species

The MBW complex operates across various species: In Actinidia chinensis
(kiwifruit), AcMYBF110, AcbHLHI1, and AcWDRI1 co-regulate late biosynthetic
genes, leading to increased anthocyanin accumulation [82]. In Hordeum vulgare
(barley), HvWD40-140, HvANT1 (MYB), and HvANT2 (bHLH) activate DFR
expression, confirmed by transient expression and yeast two-hybrid assays [83]. In
strawberry (Fragaria X ananassa), FAMYBS, FaEGL3, and FaLWD1 co-activate both
anthocyanin and proanthocyanidin biosynthetic genes [67].

These examples illustrate the conserved role of the MBW complex across species.
However, some species exhibit unique variations or regulatory mechanisms,
highlighting functional divergence within this conserved architecture. In Freesia
hybrida (a monocot), the MYB regulator FnPAP1 forms a canonical MBW complex
but displays much higher transactivation capacity than its cudicot homologs,
contributing to intense flower pigmentation and rapid domestication-driven color
evolution. This highlights functional divergence even within conserved MBW
architecture [84]. In eggplant, a novel R3-MYB repressor (SmelMYBL1) was
identified that inhibits anthocyanin accumulation by competing with MYB activators
for bHLH binding, suggesting species-specific repressor integration into the MBW
complex [80].

4.1.5. bZIP Transcription Factors and Light Signaling

Besides MBW components, bZIP transcription factors like ELONGATED
HYPOCOTYL 5 (HYS5) also modulate anthocyanin biosynthesis. In Arabidopsis
thaliana, HY5 binds flavonoid gene promoters and interacts with MBW proteins in
light signaling [85]. In Fragaria vesca, FvHY 5 heterodimerizes with FvbHLH9 to co-
activate DFR expression, integrating environmental cues with pigment regulation [85].

4.2. The Major Environmental Factors of Anthocyanin Biosynthesis

Anthocyanin accumulation in plants is tightly regulated by environmental factors,
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including temperature, light, UV radiation, soil conditions, water availability, and
nutrient status. These abiotic cues influence anthocyanin biosynthesis at both
physiological and molecular levels, thereby affecting not only pigmentation but also
the nutritional quality and market value of fruits, vegetables, and ornamental plants.

4.2.1. Temperature-Mediated Regulation

Temperature is a key determinant of anthocyanin biosynthesis. Elevated
temperatures generally inhibit pigment accumulation by suppressing the transcription
of structural and regulatory genes in the anthocyanin pathway, whereas low
temperatures enhance their expression. In Olea europaea (olive), low-temperature
conditions, particularly those associated with high-altitude environments, significantly
increased both anthocyanin content and the expression of biosynthetic genes,
indicating a positive correlation between cool climates and pigment biosynthesis [86].
Similarly, in Vaccinium myrtillus (bilberry), ecotypes from high-altitude regions
exhibited substantially higher anthocyanin concentrations, which was attributed to the
combined effects of reduced temperature and elevated UV exposure [87].

4.2.2. Light and UV Radiation

Light acts as a primary positive regulator of anthocyanin biosynthesis, often
functioning through light-responsive transcription factors such as HY'S and members
of the MYB and bHLH families. In Malus domestica (apple), light exposure
significantly induced the expression of anthocyanin biosynthetic genes such as
MdCHS, MdANS, and MdUFGTI, resulting in elevated pigment accumulation
compared to shaded fruit [88]. Moreover, in Lycium ruthenicum, UV-B radiation
exposure led to a twofold increase in anthocyanin levels in leaves and upregulated the
expression of 24 structural genes. This response was largely mediated by the activation
of MYB and bHLH transcription factors, underscoring the importance of UV signaling
in secondary metabolite regulation [89].

4.2.3. Soil Properties, Water Availability, and Nutrient Effects

Soil physicochemical characteristics and water regimes also exert significant
influences on anthocyanin biosynthesis. Soil characteristics can affect anthocyanin
biosynthesis in plants through both direct and indirect mechanisms, primarily by
modulating environmental stress responses, nutrient availability, and signaling
pathways that ultimately impact gene expression and enzyme activity in the
anthocyanin pathway. Soil nutrient composition, especially levels of nitrogen,
phosphorus, potassium, and micronutrients (like magnesium and iron), can directly
influence the expression of genes encoding enzymes in the anthocyanin biosynthetic
pathway. For example, nutrient stress can upregulate anthocyanin biosynthetic genes
as a protective response, mediated by transcription factors such as MYB, bHLH, and
WD40 [64,90]. Soil pH can affect the internal pH of plant tissues, which not only
influences anthocyanin stability and color but may also modulate the activity of
biosynthetic enzymes and the expression of regulatory genes [64]. In Lycium
ruthenicum, anthocyanin accumulation was positively associated with soil electrical
conductivity and microbial biomass carbon, while high soil nitrogen content and
excessive moisture exerted inhibitory effects in a specific ecological context [91].
These findings suggest that precise modulation of soil nutrient composition and water
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availability can be employed as agronomic strategies to enhance anthocyanin content
in economically important crops.

4.2.4. Hormonal Regulation

Phytohormones such as ethylene, abscisic acid (ABA), auxin, gibberellins (GA),
and jasmonates (JA) play integral roles in modulating anthocyanin biosynthesis by
linking developmental signals with environmental stimuli.

Ethylene: Ethylene has been shown to promote anthocyanin biosynthesis. In
Vitis vinifera cell cultures, ethephon (an ethylene-releasing compound) stimulated
anthocyanin production, and when combined with pulsed electric field treatment,
anthocyanin content increased by 2.5-fold compared to controls [92]. Phytohormones
play integral roles in modulating anthocyanin biosynthesis by coordinating
developmental cues and environmental stimuli. Among them, abscisic acid (ABA),
auxin, gibberellins (GA), and jasmonates (JA) exhibit distinct regulatory effects, either
promoting or repressing anthocyanin accumulation in various plant species.

Abscisic Acid (ABA): ABA is widely recognized as a key positive regulator of
anthocyanin biosynthesis, particularly during fruit ripening and stress responses. In
Vaccinium corymbosum (blueberry), exogenous ABA application significantly
enhanced anthocyanin accumulation in leaves, as supported by transcriptomic
evidence showing upregulation of phenylpropanoid and flavonoid biosynthetic genes,
MYB transcription factors, and ABRE-binding proteins. These findings suggest a
coordinated regulatory network involving ABA-responsive elements driving pigment
biosynthesis [93]. Similarly, in Lycium species, endogenous ABA levels were closely
correlated with anthocyanin accumulation during fruit ripening. Silencing of
LbNCEDI, a key ABA biosynthesis gene, resulted in substantial reductions in both
ABA and anthocyanin content, underscoring the hormone’s central role in activating
the MBW transcriptional complex and downstream biosynthetic genes [94]. In Prunus
avium (sweet cherry), ABA and light signals were found to synergistically enhance
anthocyanin accumulation. B-box proteins PavBBX6 and PavBBX9 were shown to
directly activate the promoters of both ABA and anthocyanin biosynthetic genes,
indicating a convergence of hormonal and photomorphogenic pathways in the
regulation of pigment biosynthesis [95].

Auxin and Gibberellins (GA): Auxin’s influence on anthocyanin biosynthesis
is context-dependent and appears to interact with other hormonal signals. In Malus
domestica (apple), both indole-3-acetic acid (IAA) and ABA positively regulated
anthocyanin accumulation. Comparative transcriptome analyses of red-fleshed
mutants revealed enhanced expression of auxin-responsive genes (AUX1, SAUR) as
well as ABA signaling components (PP2C, SnRK?2), suggesting a cooperative effect
of auxin and ABA in modulating the anthocyanin pathway under specific genetic
backgrounds [96]. In contrast, gibberellins (GAs) tend to negatively regulate
anthocyanin biosynthesis, potentially through antagonistic interactions with ABA or
via suppression of key transcription factors and biosynthetic enzymes.

Jasmonates (JA): Jasmonates also act as positive regulators of anthocyanin
biosynthesis, though their effects can be dose- and context-dependent. In tulip (Tulipa
gesneriana), foliar application of methyl jasmonate significantly increased total
anthocyanin content, particularly when applied in combination with sucrose or ABA,
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pointing to a synergistic mechanism involving multiple signaling pathways [97].
However, excessive JA or deregulation of JA signaling can lead to adverse effects. In
Brassica napus (rapeseed), suppression of JAZ proteins—negative regulators of JA
signaling—was associated with premature flower color fading, indicating that a
balanced JA signaling network is critical for maintaining stable anthocyanin levels
[98].

Plant hormones interact in complex networks to regulate anthocyanin
biosynthesis. Recent studies reveal extensive crosstalk, with no strict hierarchy but
rather context-dependent dominance and integration at both transcriptional and post-
translational levels. Key transcription factors and repressors serve as integration nodes.
For example, in apple, the zinc finger protein MdZFP7 integrates JA and GA signals
by interacting with the JA repressor MdJAZ2 and the GA repressor MdRGL3a,
modulating anthocyanin biosynthetic gene expression. The E3 ligase MABRG3 further
regulates MdZFP7 stability, adding a post-translational layer [99]. JA and GA often
have antagonistic effects, with repressors from one pathway (e.g., MdJAZ2 for JA,
MdRGL2a for GA) modulating the activity of repressors or activators from the other,
as seen with MdbHLHI162 in apple, which integrates both signals to fine-tune
anthocyanin production. Similarly, SL and GA crosstalk is mediated by the SMXL8-
AGL9 module, where GA disrupts SL-mediated repression of anthocyanin
biosynthesis [100]. In Arabidopsis and pear, JA and ET signaling converge on ERF
transcription factors (e.g., PbERF22), which respond to both hormones and enhance
the activation of anthocyanin biosynthetic genes by MYB factors [101,102].

Anthocyanin content directly affects fruit coloration, nutritional value, and
consumer appeal [103]. Environmental and hormonal regulation can be harnessed to
optimize fruit color and quality, as seen in apples, grapes, and other fruit crops [104].
This has direct implications for breeding programs and post-harvest management to
maximize commercial value.

5. Functions of Anthocyanins

The multifunctional roles of anthocyanins in higher plants and humans are
graphically summarized in Figure 2. In plant systems, anthocyanins contribute to
pigmentation and signal attraction, enhance abiotic stress resistance, and provide
photoprotective and antioxidant defenses. These physiological roles are closely linked
to their ability to scavenge reactive oxygen species and filter excessive light,
particularly under environmental stress such as high irradiance, drought, and low
temperatures.
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Figure 2. The multifunctional roles of anthocyanins in higher plants and human health.

In human health, anthocyanins exert pleiotropic biological effects, including
antioxidant, anti-inflammatory, and anti-cancer activities. They have also been
associated with cardiovascular protection, metabolic regulation, and gut microbiota
modulation. These effects are mediated through multiple cellular pathways, such as
suppression of oxidative stress and inflammation, regulation of lipid metabolism, and
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maintenance of intestinal barrier integrity. Collectively, these findings underscore the
conserved and systemic significance of anthocyanins across biological kingdoms,
highlighting their relevance as both functional phytochemicals and nutritional
therapeutics.

5.1. Biological Functions of Anthocyanins in Higher Plants
5.1.1. Anthocyanins in Abiotic Stress Tolerance

As aclass of flavonoid pigments widely distributed in higher plants, anthocyanins
have been extensively implicated in modulating plant growth and enhancing tolerance
to abiotic stress. A comprehensive meta-analysis encompassing over 100 studies
revealed that anthocyanin accumulation is significantly induced under a range of
abiotic stress conditions, including exposure to heavy metals, drought, and ultraviolet
(UV) radiation [105]. The elevated levels of anthocyanins are strongly correlated with
enhanced stress resistance in plants, particularly in genetically modified lines
overexpressing key anthocyanin biosynthetic regulators, such as R2R3-MYB
transcription factors. These transgenic plants exhibited up to a 5.8-fold increase in
anthocyanin content, accompanied by improved tolerance to oxidative stress through
upregulation of protective compounds such as glutathione and proline, both essential
for maintaining redox homeostasis and cellular integrity [105].

The primary mechanism underlying anthocyanin-mediated stress tolerance
involves reactive oxygen species (ROS) homeostasis. Field-grown plants frequently
encounter multiple abiotic stressors that induce ROS production. While moderate ROS
levels serve as signaling molecules activating stress-tolerance pathways, excessive
accumulation causes oxidative cellular damage. Plants respond by upregulating
anthocyanin biosynthesis genes through ROS signaling cascades, with the resulting
anthocyanins functioning as potent antioxidants that neutralize excess ROS and restore
cellular redox balance [106].

This antioxidant capacity has been validated across diverse stress conditions and
plant species. Under low-temperature stress, Mikania micrantha exhibited enhanced
antioxidant capability and cold tolerance, with red leaves and stems containing higher
anthocyanin concentrations demonstrating superior antioxidant activity [107].
Similarly, in vitro and in vivo studies using anthocyanins from black chokeberry
(Aronia melanocarpa) and purple potato (Solanum tuberosum cv. 'Purple Majesty")
consistently showed superior antioxidant properties compared to conventional
antioxidant compounds [108,109]. These findings underscore the multifunctional role
of anthocyanins in enhancing plant growth and resilience under abiotic stress. Their
combined effects in ROS detoxification and photoprotection render anthocyanin
biosynthetic pathways promising targets for genetic manipulation aimed at improving
crop stress tolerance and productivity.

Recent studies confirm that while genetic manipulation of anthocyanin pathways
is feasible, field-level stability [110], environmental sensitivity [111], metabolic trade-
offs [112], and regulatory hurdles [111] remain major obstacles. Translational research
and improved biotechnological strategies are needed before widespread agricultural
application is possible.

5.1.2. Anthocyanin-Mediated Photoprotection
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Additionally, mechanistic studies in Arabidopsis thaliana have revealed the dual
protective roles of anthocyanins. On one hand, their strong radical-scavenging activity
contributes to the alleviation of oxidative stress. On the other hand, under high light
conditions, their primary photoprotective function is mainly attributed to their capacity
to attenuate excessive light, rather than solely to their antioxidant properties. Notably,
plants exhibiting enhanced anthocyanin-mediated light absorption showed substantial
resistance to photooxidative damage, even when the intrinsic antioxidant system alone
was insufficient to prevent cellular injury [113].

Anthocyanins accumulate within the vacuoles of epidermal and sub-epidermal
leaf cells, where they effectively absorb visible light wavelengths, particularly green
and blue light, as well as portions of ultraviolet radiation. This selective light
absorption reduces excess photon penetration into mesophyll cells, thereby alleviating
excitation pressure on photosystem II and preventing photoinhibition and
photobleaching phenomena. This "light-screening”" mechanism is widely recognized
as the primary photoprotective function of anthocyanins in plant tissues [114].

Photoreceptors such as UVRS, phytochromes, and cryptochromes perceive
wavelength-specific light signals and activate transcription factors (e.g., HYS5, MYB,
and bHLH). These regulators then upregulate anthocyanin biosynthetic genes,
promoting anthocyanin accumulation and enhancing plant adaptation to high-light
conditions [115,116].

Anthocyanins are predominantly accumulated in the epidermal cells of plant
tissues. Based on their distribution, it is widely believed that anthocyanins function as
filters of visible and ultraviolet light, thereby alleviating light-induced stress in plants.
For example, in Castanopsis fissa, anthocyanins were found in the trichomes of young
leaves, forming a red coating that helped protect the leaves from severe light-induced
photoinhibition [117]. Anthocyanins exhibit two characteristic absorption peaks: one
in the ultraviolet region (270-290 nm) and another in the visible region (500—550 nm),
confirming their capacity to absorb both UV and visible light. In many plant species,
the accumulation of anthocyanins in young leaves has been proposed as a frontline
defense mechanism against excess light exposure [118-120].

Recent experimental studies have advanced the understanding of anthocyanin-
mediated photoprotection in woody plant leaves, particularly under low temperature
and high light conditions. In transgenic apple plants overexpressing the MAMYB10
gene, enhanced anthocyanin accumulation in leaves led to increased absorption of
visible light, especially in the green region, effectively reducing photoinhibition under
intense light exposure. However, this photoprotection came at the cost of reduced
photosynthetic capacity, indicating a trade-off between light shielding and carbon
assimilation [114].

In Arabidopsis thaliana, physiological and biochemical analyses of lines with
varying anthocyanin content demonstrated that the light-attenuating function of
anthocyanins is more critical for photoprotection under prolonged high light than their
antioxidant capacity. Mutants deficient in anthocyanin biosynthesis (ANS-deficient)
exhibited greater sensitivity to high light, with lower chlorophyll content, reduced
F./Fn ratios, and increased oxidative damage, despite elevated antioxidant activity.
This suggests that anthocyanins primarily protect the photosynthetic apparatus by
filtering excess light when non-photochemical quenching (NPQ) is insufficient [113,
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121].

Seasonal studies in subtropical tree species further revealed that anthocyanin
accumulation in young leaves during winter compensates for limited NPQ, providing
an alternative photoprotective mechanism. Red leaves with high anthocyanin content
showed improved recovery of photosynthetic efficiency after high-light stress
compared to green leaves, supporting the functional advantage of anthocyanin-
mediated light attenuation under cold, high-irradiance conditions [122].

In addition to their role in leaves, anthocyanins have also been shown to protect
fruit tissues. For instance, in harvested pears, light stress treatments revealed that
higher anthocyanin content in the peel was associated with reduced light-induced
inhibition [123].

5.1.3. Anthocyanins in Biotic Stress Resistance

Anthocyanins contribute to biotic stress resistance at multiple levels, including
herbivore defense, postharvest protection, and plant—microbiome interactions.

Anthocyanins have been shown to play a role in disease and pest resistance in
higher plants. As early as 2006, Karageorgou and Manetas found that anthocyanins
might protect red leaves either by making them less visible to herbivorous insects or
by making the herbivores feeding on them more visible to predators. One possible
mechanism is that the accumulation of anthocyanins masks the strong green
reflectance of chlorophyll, thereby altering insect perception [124].

In postharvest fruits, anthocyanins have demonstrated benefits for storage and
shelf life. Tomatoes are known to decay easily due to over-ripening and susceptibility
to pathogens [125]. Anthocyanins, as a subclass of flavonoids with potent antioxidant
and antimicrobial properties, have emerged as key metabolites in plant defense against
biotic and abiotic stresses during the postharvest stage. Their accumulation in various
crop species has been closely associated with enhanced resistance to pathogenic
infections, low-temperature injury, and insect herbivory, thereby contributing
significantly to the maintenance of food quality and the extension of shelf life.

Besides, recent metagenomic and 16S rRNA sequencing studies provide direct
evidence that anthocyanin accumulation in plants can alter the composition of
associated microbial communities: In Medicago truncatula, a mutant with elevated
anthocyanin levels (purple leaves) showed a significant increase in the abundance of
endophytic lactic acid bacteria in the phyllosphere. This shift was confirmed by 16S
rRNA amplicon sequencing [126]. Mechanistically, anthocyanin accumulation
reduced reactive oxygen species (ROS) in plant tissues, creating a more favorable
environment for facultative anaerobic bacteria such as lactic acid bacteria. In vitro
experiments further demonstrated that anthocyanins directly promoted the growth of
these bacteria under anaerobic conditions [126].

5.1.4. Genetic Manipulation of Anthocyanin Biosynthesis

In Camellia sinensis (tea plant), infection by Colletotrichum spp. (the causal agent
of anthracnose) induces the biosynthesis of anthocyanin-3-O-galactoside, which
accumulates visibly as a “pink ring” around necrotic lesions. This metabolite functions
as a phytoalexin, and its production is regulated by a set of structural and regulatory
genes, including CsF3Ha, CsANSa, and CsMYBI113. Functional studies have
confirmed that manipulation of these genes can significantly enhance resistance to
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anthracnose, underscoring the defensive role of inducible anthocyanin biosynthesis
pathways [127]. In Malus spp. (apple), ectopic expression of transcription factors
MpERF105 and MpNAC72 has been shown to activate the anthocyanin regulatory
gene MpMYBI10b, resulting in increased anthocyanin accumulation in leaves and
improved resistance to rust disease. These findings demonstrate the efficacy of
transcription factor-based genetic engineering strategies for augmenting anthocyanin-
mediated disease resistance [128]. Lettuce (Lactuca sativa) provides further evidence
of this relationship. Genome-wide association studies (GWAS) have revealed that red
and dark red cultivars, characterized by elevated anthocyanin content, exhibit a
markedly lower incidence of Sclerotinia minor infection. Notably, resistance-
associated QTLs frequently co-localize with anthocyanin biosynthetic loci such as
RLL2 and ANS, suggesting pleiotropic or tightly linked genetic control of both traits
[129]. Similar patterns have been observed in Brassica juncea (Indian mustard), where
anthocyanin-rich genotypes and mutants display earlier and more robust antioxidant
responses upon infection with Sclerotinia sclerotiorum. These lines show reduced
lesion expansion and lower levels of lipid peroxidation, compared to anthocyanin-
deficient controls, indicating that anthocyanin-mediated oxidative buffering plays a
key role in restricting pathogen spread [130].

5.2. Physiological Functions of Anthocyanins
5.2.1. Antioxidant Activity and Bioavailability Enhancement

Anthocyanins exhibit strong antioxidant activity in both in vitro and in vivo
systems, making them promising candidates for application in functional foods and
nutraceutical formulations. A growing body of evidence has confirmed their efficacy
in scavenging free radicals, mitigating oxidative stress, and conferring protection
against inflammation and neurodegenerative processes.

Petunidin-3,5-O-diglucoside, the predominant anthocyanin identified in Lycium
ruthenicum Murr. fruit, has demonstrated significant free radical scavenging activity
as assessed by DPPH and ABTS assays. Beyond its in vitro antioxidant capacity, this
compound effectively attenuated oxidative damage and neuroinflammatory responses
in neuronal cell models and aged mice, leading to improved cognitive performance.
These findings underscore its dual role as both an antioxidant and a neuroprotective
agent [131].

Anthocyanins derived from purple potato (Solanum tuberosum cv. 'Purple
Majesty') have similarly shown high DPPH radical scavenging ability and lipid
peroxidation inhibition. Mechanistic analyses revealed their capacity to donate
hydrogen atoms and stabilize reactive radical species, confirming their molecular basis
of antioxidant action [109]. In vivo administration of blueberry anthocyanin extracts
to murine models resulted in enhanced systemic antioxidant defenses, as evidenced by
elevated total antioxidant capacity, increased activities of superoxide dismutase (SOD)
and glutathione peroxidase (GPX), and reduced malondialdehyde (MDA)
concentrations—an indicator of lipid peroxidation [132].

Advances in food processing technologies have further improved the functional
properties of anthocyanins. Nanoencapsulation of black carrot anthocyanins within
chitosan nanoparticles has been shown to enhance their bioavailability and stability,
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thereby increasing their in vivo antioxidant efficacy compared to non-encapsulated
counterparts [133]. In addition, microencapsulation techniques utilizing
fructooligosaccharides and whey protein matrices have been successfully applied to
anthocyanins from black soybean seed coats. These encapsulated forms exhibited
superior digestive stability and antioxidant activity, while also promoting beneficial
shifts in gut microbiota composition under simulated gastrointestinal conditions [ 134].

5.2.2. Cardiovascular Protection

Anthocyanins have demonstrated potential in the prevention and treatment of
cardiovascular diseases (CVDs), which remain a leading cause of death and a major
threat to global public health. Atherosclerosis is a key pathological process underlying
many forms of CVD, including hypertension, coronary artery disease, hyperlipidemia,
and myocarditis. The cardioprotective effects of anthocyanins are largely attributed to
their antioxidant properties. Wallace et al. [135] reported that anthocyanins may
influence cardiovascular health through several mechanisms: (1) modulating nitric
oxide (NO) signaling pathways; (2) inhibiting tumor necrosis factor-alpha (TNF-a)-
induced monocyte chemoattractant protein-1 (MCP-1) secretion; (3) reducing
monocyte adhesion to endothelial cells; and (4) lowering circulating levels of C-
reactive protein (CRP), a key marker of inflammation. A systematic review and meta-
analysis of randomized controlled trials further confirmed that anthocyanins, whether
consumed through food or as purified extracts, significantly improved vascular
function. Specifically, they enhanced flow-mediated dilation (FMD) and reduced
arterial stiffness, as measured by pulse wave velocity (PWV) [136]. Mechanistically,
black currant fruit extracts have been shown to activate endothelial nitric oxide
synthase (eNOS) via a redox-sensitive PI3K/Akt signaling pathway. This activation
promotes the biosynthesis of nitric oxide (NO), a potent vasodilator that plays a critical
role in ameliorating endothelial dysfunction [137]. These findings support the role of
anthocyanins as natural agents for cardiovascular protection and highlight their
potential in functional foods or nutraceutical interventions aimed at reducing CVD
risk.

5.2.3. Anti-inflammatory Effects and Immune Modulation

Anthocyanins, beyond their antioxidant properties, have been increasingly
recognized for their anti-inflammatory potential, which is mediated through multiple
molecular pathways. Accumulating clinical and experimental evidence supports their
application as bioactive compounds in functional foods for the prevention and
management of chronic inflammation-related diseases.

Clinical trials have demonstrated that anthocyanin supplementation in individuals
with dyslipidemia and metabolic syndrome elicits significant reductions in systemic
inflammatory markers, including interleukin-6 (IL-6), tumor necrosis factor-a. (TNF-
a), and C-reactive protein (CRP), as well as oxidative stress biomarkers such as
malondialdehyde (MDA) and 8-iso-prostaglandin F2a. These improvements are
accompanied by enhanced activities of endogenous antioxidant enzymes and favorable
modulation of lipid metabolism [138,139].

At the molecular level, anthocyanins exert anti-inflammatory effects primarily
through inhibition of the nuclear factor-kappaB (NF-«B) signaling pathway. This leads
to downregulation of key pro-inflammatory genes, including those encoding
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cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), at both
mRNA and protein levels. In vitro experiments using macrophage and intestinal
epithelial cell models have revealed that anthocyanin-rich extracts from red clover,
purple vegetables, and banana bract effectively attenuate nitric oxide (NO) production,
suppress prostaglandin E2 (PGE2) biosynthesis, and reduce the secretion of pro-
inflammatory cytokines by modulating NF-kB and mitogen-activated protein kinase
(MAPK) signaling cascades [140-142].

In addition to these direct effects on inflammatory mediators, anthocyanins
influence the gut environment by modulating the composition of gut microbiota and
enhancing intestinal barrier integrity. These effects contribute to systemic anti-
inflammatory responses and underscore the role of gut-immune interactions in
mediating the bioactivity of anthocyanins [143].

Experimental evidence further supports these findings. Anthocyanins from purple
sweet potato were shown to suppress the expression of inflammatory cytokine mRNAs,
thereby exerting anti-inflammatory effects. In black soybean seed coats, anthocyanins
inhibited lipopolysaccharide (LPS)-induced production of pro-inflammatory
mediators in BV2 microglial cells by downregulating the overexpression of relevant
enzymes [144].

Moreover, petunidin glucosides isolated from Lycium ruthenicum were found to
alleviate dextran sulfate sodium (DSS)-induced colitis in mice by blocking pro-
inflammatory cytokines, enhancing the expression of tight junction proteins, and
modulating gut microbiota composition [145]. These results underscore the
therapeutic potential of anthocyanins, particularly in the form of purified monomeric
compounds, for managing inflammatory conditions.

5.2.4. Anti-obesity and Metabolic Regulation

Obesity is a serious health concern and a major risk factor for cardiovascular
diseases, cancer, and respiratory disorders. It has been extensively documented that
anthocyanins combat obesity by reducing body fat accumulation and modulating lipid
metabolism.

For example, anthocyanins extracted from purple sweet potato were found to
inhibit fat formation and promote lipolysis. Studies demonstrated that these
compounds suppressed the growth of lipid droplets by decreasing leptin secretion,
reducing adipocyte size, and lowering the accumulation of free fatty acids. They also
downregulated the expression of lipogenic genes, including fatty acid synthase (FAS),
lipoprotein lipase (LPL), and acetyl-CoA synthetase, while enhancing lipolytic
activity [146].

In another study, four-week-old C57BL/6 mice fed a high-fat diet and
supplemented with blueberry and mulberry juice for 12 weeks exhibited reduced body
weight gain, attenuated lipid accumulation, and decreased serum cholesterol levels.
These effects were associated with the downregulation of fatty acid biosynthesis-
related genes such as PPARy and FAS, and upregulation of f-oxidation—related genes
like CPT1 [147].

Anthocyanins have garnered considerable attention for their potential to combat
obesity and prevent cancer through multifaceted mechanisms involving metabolic
regulation, inflammatory suppression, and modulation of gut microbiota. Recent
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advances in both in vitro and in vivo studies support their efficacy as bioactive
constituents in functional foods aimed at preventing metabolic disorders and
tumorigenesis. In obesity models, anthocyanin-rich extracts derived from pigmented
crops such as Cheongchunchal corn and color-fleshed sweet potatoes have been shown
to inhibit adipocyte differentiation and lipid accumulation in 3T3-L1 preadipocytes.
These extracts also attenuate body weight gain and improve serum lipid profiles in
high-fat diet (HFD)-induced obese mice. These physiological benefits are associated
with enhanced phosphorylation of AMP-activated protein kinase (AMPK) and
suppression of key adipogenic transcription factors, including peroxisome
proliferator-activated receptor-y (PPARy) and CCAAT/enhancer-binding proteins
(C/EBPs), suggesting a conserved mechanism of anthocyanin-mediated metabolic
control [148,149]. Beyond direct metabolic effects, anthocyanins also modulate the
composition and activity of the gut microbiota, which plays a critical role in obesity
pathogenesis. Animal studies have demonstrated that anthocyanin supplementation
reduces obesity-associated dysbiosis and chronic low-grade inflammation, while
improving gut barrier function and systemic energy balance. These observations
support the emerging view of anthocyanins as prebiotic-like agents that contribute to
metabolic homeostasis through host—microbe interactions [150,151]. In addition,
anthocyanins have been reported to modulate key signaling pathways involved in lipid
and glucose metabolism, such as Wnt/PPAR and PI3K/Akt, which further contribute
to their anti-obesity and metabolic regulatory effects [152,153].

5.2.5. Anti-cancer Properties and Mechanistic Insights

In the context of cancer prevention, particularly colorectal cancer, anthocyanins
exhibit chemopreventive effects by targeting pathways involved in cell cycle
regulation, apoptosis induction, and inflammatory signaling. Diets enriched with
anthocyanin-containing fruits and vegetables have been shown to suppress tumor
formation and progression in experimental models. Mechanistically, these effects are
attributed to the modulation of key molecular targets such as NF-xB, COX-2, and
caspases, which govern inflammatory responses and programmed cell death [154].

These compounds exert their anti-carcinogenic effects by promoting apoptosis,
arresting the cell cycle, inhibiting abnormal epithelial proliferation, and suppressing
inflammation and oxidative stress pathways. In addition, anthocyanins from
strawberries have been shown to inhibit the proliferation and metastasis of breast
cancer cells, ultimately inducing apoptosis [155]. The anti-cancer potential of
anthocyanins and their structural derivatives has become a focal point in
phytochemical and functional food research, with mounting evidence supporting their
efficacy against various malignancies, including cervical cancer. Comparative
analyses of different anthocyanin derivatives have revealed distinct variations in
bioactivity and chemical stability, highlighting the importance of structural
optimization for therapeutic applications.

A study investigating the anti-cancer properties of blueberry-derived
anthocyanins (glycosides), anthocyanidins (aglycones), and pyranoanthocyanidins
(structurally modified derivatives) in HeLa cervical cancer cells demonstrated that
anthocyanidins exhibit the most potent cytotoxic effects among the three pigment
types [6]. These compounds significantly inhibited cancer cell proliferation, induced
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cell cycle arrest at the G2/M phase, and promoted late-stage apoptosis. These cellular
responses were accompanied by an upregulation of the tumor suppressor protein p53
and were mechanistically linked to the activation of the p38 mitogen-activated protein
kinase (MAPK)/p53 signaling pathway. Notably, pyranoanthocyanidins exhibited
superior structural stability across a broad pH range, underscoring their potential as
food-grade anti-cancer agents with enhanced physicochemical robustness [156].

Expanding beyond cervical cancer models, numerous in vitro and in vivo studies
have demonstrated that anthocyanins and their derivatives impede tumorigenesis by
suppressing cellular proliferation, inhibiting migration and invasion, and inducing
apoptosis through modulation of key intracellular pathways, including MAPK and
PI3K/Akt [157]. These compounds can downregulate oncogenes and simultaneously
enhance the expression of tumor suppressor genes, thereby exerting a dual regulatory
effect on cancer progression.

5.2.6 Gut Microbiota Metabolites in Regulating the Health Benefits of
Anthocyanins

Recent studies indicate that gut microbiota-derived metabolites act as critical
mediators of the health-promoting effects of anthocyanins. Since anthocyanins are
largely unabsorbed in the upper gastrointestinal tract, they undergo extensive
microbial metabolism in the colon, generating a range of bioactive compounds,
including short-chain fatty acids (SCFAs), bile acids, indoles, and phenolic acids
[134,158,159]. SCFAs such as acetate, propionate, and butyrate contribute to intestinal
barrier maintenance, immune modulation, and systemic metabolic regulation, and
have been linked to protection against obesity, diabetes, and cardiovascular disease
[158,159]. Alterations in bile acid metabolism induced by anthocyanin-mediated
changes in gut microbial composition further influence lipid and glucose homeostasis
as well as inflammatory processes [158]. In addition, shifts in tryptophan metabolism
can enhance the production of indole derivatives, which support barrier function,
regulate host immunity, and exert potential neuroprotective effects via the gut—brain
axis [159]. Collectively, these findings support the concept of an anthocyanin—
microbiota—metabolite axis, in which anthocyanins reshape microbial communities
(e.g., enrichment of Bifidobacterium and Lactobacillus) while microbial metabolism
enhances the bioavailability and biological activity of anthocyanin-derived
metabolites [134,158—160]. This bidirectional interaction highlights that many of the
physiological effects attributed to anthocyanins may, in fact, be mediated by their
microbial metabolites rather than the parent compounds [159-162].

6. Conclusions

Anthocyanins are multifunctional secondary metabolites that play critical roles in
plant physiology and offer considerable health benefits in humans. Extensive studies
have elucidated their biosynthetic pathways, transport mechanisms, regulatory
networks, and bioactivities, highlighting their involvement in stress tolerance,
pigmentation, and disease resistance. In humans, anthocyanins have demonstrated
potent antioxidant, anti-inflammatory, cardioprotective, antidiabetic, and anticancer
properties, supporting their application in functional foods and pharmaceuticals.
Despite substantial progress, gaps remain in our understanding of their intracellular
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trafficking, environmental responsiveness, and molecular regulation. Continued
exploration of these mechanisms, alongside the application of advanced
biotechnological tools, will enable more precise manipulation of anthocyanin
pathways for crop improvement and the development of anthocyanin-enriched
nutraceuticals.

7. Perspective

Anthocyanins are bioactive compounds that contribute significantly to plant
growth and development, while also offering considerable health benefits to humans
and animals. Although the antioxidant structure of anthocyanins has been well
characterized, the precise molecular mechanisms underlying their antioxidant
functions in plants remain largely unknown. Current studies have primarily focused
on anthocyanins extracted from plant tissues or applied exogenously to model systems.
However, in vivo functions of anthocyanins are often influenced by other
physiological and environmental factors, and their broader biological roles in
promoting plant adaptation and survival under natural conditions warrant further
investigation.

Anthocyanins are widely recognized as important dietary antioxidants, and
numerous studies have explored their clinical potential. Despite the identification of
multiple pharmacological effects, the molecular signaling pathways responsible for
these functions are still poorly understood. Therefore, elucidating how to effectively
harness and enhance the bioactivity of anthocyanins remains an important research
challenge.

Although the biosynthetic pathway of anthocyanins has been extensively studied,
the process is highly complex and not yet fully understood. Investigations into
anthocyanin transport and transcriptional regulation are still in their early stages.
While it is established that anthocyanins are synthesized in the cytoplasm and
transported to the vacuole, little is known about their transport dynamics beyond this
step—such as efflux from vacuoles, intercellular movement, and trafficking to specific
subcellular compartments like the nucleus or chloroplast. Moreover, long-distance
transport mechanisms of anthocyanins within the plant are still largely unexplored.

The accumulation of anthocyanins is regulated not only by intrinsic genetic
factors but also by environmental cues such as temperature, light intensity, and sugar
availability. However, the molecular mechanisms by which these external factors
influence anthocyanin biosynthesis are not well characterized. It also remains unclear
whether other, yet unidentified, environmental stimuli may affect anthocyanin
production. Therefore, future studies should focus on the integrated regulation of
anthocyanin biosynthesis by both internal and external factors, as well as the crosstalk
between them.

Furthermore, research on anthocyanin stability and degradation is limited, and the
regulatory mechanisms governing anthocyanin-degrading genes are poorly
understood. Modern biotechnological tools such as genome editing, high-throughput
sequencing, transcriptomics, and proteomics should be employed to advance this field.
A comprehensive understanding of anthocyanin biosynthesis, modification, transport,
and degradation, as well as its interaction with other metabolic pathways and
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environmental stimuli, will provide a theoretical basis for the genetic improvement of
anthocyanin-rich plant varieties and promote their application in agriculture and
health-related industries.
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