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Abstract: The regeneration of spent activated carbon saturated with adsorbates inherently 

involves pollutant migration, including volatile organic compounds (VOCs) and heavy metals. 

However, a comprehensive and systematic understanding of the varying pollutant migration 

behaviors across different regeneration techniques remains limited. This study reviews the 

regeneration of spent activated carbon and innovatively contrasts pollutant migration behavior 

for three widely used regeneration techniques: thermal, solvent, and electrochemical 

regeneration. A key contribution lies in highlighting the distinct pollutant migration profiles 

associated with traditional methods like incineration compared to emerging techniques such as 

microwave thermal regeneration and supercritical CO2 solvent regeneration, emphasizing their 

implications for secondary pollution control. The current state of spent activated carbon 

regeneration technologies is critically evaluated in light of both engineering practices and 

research progress, and potential avenues for future development are proposed. This research 

provides valuable insights for the efficient regeneration of spent activated carbon and pollution 

control during the regeneration process. 

Keywords: spent activated carbon; pollutants; migration and transformation; thermal 

regeneration; electrochemical regeneration 

1. Introduction 

Activated carbon is a processed carbonaceous material characterized by a porous 
structure that confers excellent adsorption properties [1]. Typically produced from 
abundant and high-carbon-content materials such as coal and biomass through 
chemical or physical activation processes, activated carbon is available in various 
forms, including granular, powdered, and honeycomb, each with widespread 
applications [2–5]. Possessing strong adsorption capacity, stable physicochemical 
properties, high strength, and resistance to high temperatures, acids, and bases, 
activated carbon is extensively used in diverse fields such as environmental protection 
and chemical engineering [6,7]. During the adsorption of pollutants, the adsorption 
capacity of activated carbon gradually decreases. Once it no longer meets the 
requirements, it becomes spent activated carbon and is managed as a solid waste. With 
the increasing annual consumption of activated carbon, the proper disposal of spent 
activated carbon has become a widespread concern. In 2023, the State Council 
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released the Action Plan for Continuous Improvement of Air Quality, highlighting the 
importance of spent activated carbon regeneration. 

The conventional approach to managing spent activated carbon involves 
incineration [8]. However, this method produces considerable quantities of 
combustion emissions that necessitate further treatment, while simultaneously 
squandering the inherent value of the high-grade carbonaceous material. Spent 
activated carbon regeneration is an effective means of resource utilization, as it 
substantially restores the carbon’s initial activity, enabling subsequent reuse. This 
process presents notable economic and environmental advantages over traditional 
disposal strategies. Currently, various effective regeneration techniques, such as 
thermal and solvent regeneration, have been developed [9–14]. However, the process 
of restoring the adsorption capacity of spent activated carbon through regeneration is 
also a process of desorbing pollutants into the environment. Because pollutants are 
merely transferred rather than effectively degraded, this undoubtedly increases the 
environmental and human health risks associated with spent activated carbon 
regeneration, hindering industry development. Therefore, the migration patterns of 
pollutants during spent activated carbon regeneration warrant attention. 

The use of activated carbon for removing contaminants from water and air 
streams generates significant quantities of spent activated carbon. While regeneration 
offers a sustainable approach to managing this waste, the process can inadvertently 
transfer adsorbed pollutants from the carbon matrix into other environmental 
compartments, posing secondary pollution risks. This study critically reviews 
commonly employed spent activated carbon regeneration methods, encompassing 
thermal, solvent, and electrochemical approaches. Furthermore, it provides a detailed 
analysis of the fate and transport of various pollutants during regeneration, including 
volatile organic compounds, heavy metals, and emerging contaminants. The 
overarching goal is to offer valuable insights and guidance for optimizing regeneration 
processes to achieve greater efficiency, minimize environmental impacts, and 
safeguard public health. 

2. Research Status of Spent Activated Carbon Regeneration 

To assess the current research landscape, the Web of Science Core Collection 
database was searched using “Spent activated carbon regeneration” as the topic search 
term, covering the period from 2008 to 2024. This search yielded a total of 2003 
publications. Figure 1 illustrates that the number of related studies grew consistently 
from 26 in 2008 to 251 in 2021, representing a substantial average annual growth rate 
of 19.1%. The surge in publications post-2018 may correlate with stricter 
environmental policies. While the number of publications has decreased since 2021, a 
considerable volume of articles continues to be published annually, demonstrating the 
continued widespread interest in spent activated carbon regeneration. 

In terms of research content, the focus of related studies is diverse and complex. 
Keywords related to research objectives include “adsorption,” “removal,” and 
“kinetics.” The studied systems encompass “waste water,” “groundwater,” and 
“drinking water.” The activated carbon raw materials of interest are primarily 
“graphene oxide,” “biomass,” and “agricultural waste.” Regarding widely studied 
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regeneration methods, thermal regeneration (44.3%), electrochemical regeneration 
(40.9%), and chemical regeneration (solvent regeneration, 14.8%) are the most 
prevalent. Additionally, microwave regeneration and biological regeneration 
techniques are commonly applied in practical engineering. Biological regeneration 
offers the advantages of a simple process, low construction and operating costs, and 
minimal carbon loss. However, it is characterized by long regeneration times and is 
generally unsuitable for activated carbon with high acid, alkali, or chlorine content 
[15]. 

 
Figure 1. Number of publications from 2008 to 2024. 

As illustrated in Figure 2, “regeneration” is strongly associated with keywords 
such as “removal” and “degradation,” underscoring the fundamental goal of restoring 
the activated carbon’s capacity to eliminate pollutants. This close interrelationship 
suggests that understanding the migration and transformation pathways of pollutants 
during regeneration is a central focus of the field. Further insights arise from 
examining the clustering of specific regeneration techniques. The proximity of 
“advanced oxidation processes”, “electrochemical regeneration,” and “thermal 
regeneration” reveals a growing trend of combining these methods to enhance 
regeneration efficiency and broaden applicability. Specifically, the link between 
“oxidation” and “electrochemical regeneration” reflects the increasing integration of 
these approaches to leverage their synergistic effects. Electrochemical methods can 
generate powerful oxidizing agents in situ, such as hydroxyl radicals or ozone, which 
then degrade adsorbed organic pollutants directly on the activated carbon surface. This 
combination enhances the oxidative power and avoids the need for external addition 
of chemical oxidants, offering improved control and potentially reduced costs. The 
dual focus on regeneration alongside the oxidative removal of pollutants reinforces the 
current trend toward integrated systems for both reclaiming the adsorbent and 
eliminating the adsorbed contaminants. 

Within this context, dyes and other relatively simple pollutants exhibit the 
strongest associations, likely reflecting the emphasis on fundamental mechanistic 
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studies in related research. These studies often aim to elucidate the reaction pathways 
and limiting steps involved in pollutant degradation. In contrast, the red cluster 
encompasses a diverse array of pollutants, including heavy metals, ions, and 
methylene blue, suggesting a research focus on more complex pollution scenarios 
involving both organic and heavy metal contamination. These studies tend to 
investigate the distribution mechanisms, kinetics, and thermodynamics of diverse 
pollutants during regeneration processes relevant to real-world applications. 
Furthermore, a significant portion of the research explores the relationship between 
spent activated carbon regeneration and its source materials (blue cluster). Beyond 
conventional biochar, these studies consider raw materials such as agricultural waste, 
biomass, and even shells, and examine the impact of the type of raw material on the 
activated carbon’s surface area, pore structure, and surface chemistry. This strong 
correlation underscores the importance of tailoring the activated carbon material to the 
specific regeneration process and target pollutants. 

In summary, research in this area comprehensively addresses both the migration 
and transformation of pollutants during spent activated carbon regeneration and the 
regeneration process itself. However, the multifaceted nature of these studies means 
that the central research themes and their priority remain somewhat diffuse, and issues 
within the field, as well as future directions, require further clarification. A deeper 
understanding of pollutant migration patterns during spent activated carbon 
regeneration is crucial for promoting the long-term and sustainable development of 
the activated carbon industry. 
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Figure 2. Visualization of keyword relationships in relevant research over the past five years based on VOSviewer 
analysis. 

3. Pollutant Migration Behaviors during Spent Activated Carbon 
Regeneration 

A comparison of thermal, solvent, and electrochemical regeneration, three 
common methods for regenerating spent activated carbon, is presented in Table 1, 
focusing on energy consumption, pollutant removal efficiency, and waste by-products. 
By comparison, thermal regeneration is characterized by high energy consumption and 
a medium level of pollutant removal efficiency. The main waste by-products from this 
process are flue gas (CO, NOX, SOX), ash, and volatilized organic compounds. Solvent 
regeneration consumes a moderate amount of energy but achieves lower pollutant 
removal, resulting in concentrated liquid waste (containing pollutants). 
Electrochemical regeneration boasts low energy consumption and high pollutant 
removal efficiency, but its waste stream primarily consists of electrolyte solution 
(potentially containing degraded pollutants) and electrode corrosion products. 
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Table 1. Comparison of spent activated carbon regeneration methods. 

Regeneration 
Method 

Energy 
Consumption 

Pollutant 
Removal 
Efficiency 

Waste By-products 

Thermal 
regeneration 

High Medium 
Flue gas (CO, NOX, SOX), Ash, 
Volatilized organics  

Solvent 
regeneration 

Medium Low 
Concentrated liquid waste 
(containing pollutants) 

Electrochemical 
regeneration 

Low High 
Electrolyte solution (potentially 
containing degraded pollutants), 
electrode corrosion products 

3.1. Pollutant Migration Behaviors during Thermal Regeneration 

Thermal regeneration is one of the earliest techniques applied for the regeneration 
of activated carbon saturated with organic pollutants [16–20]. Its advantages include 
short processing times, high efficiency, and broad applicability, leading to its 
widespread adoption. The thermal regeneration process for saturated activated carbon 
typically comprises three stages: (1) Drying stage: Heat is applied to evaporate 
moisture and some low-boiling-point organic compounds from the activated carbon. 
In engineering applications, this stage is sometimes supplemented with hot purging to 
facilitate the volatilization of low-boiling-point organics. (2) Carbonization stage: 
Within a temperature range of approximately 200–900 ℃, large organic molecules are 
thermally decomposed into smaller organic molecules or inorganic substances such as 
CO2 and CO. Organic pollutants that are difficult to desorb undergo carbonization and 
remain trapped within the pores of the activated carbon. (3) Activation stage: Under 
conditions of 800–1000 ℃, with the presence of gases such as steam or O2, the 
remaining carbonized pollutants react, promoting their decomposition or gasification. 
This process clears the occupied adsorption pores of the activated carbon, leading to 
the regeneration of its adsorption capacity. In engineering applications, this stage can 
also be supplemented with purging to promote the volatilization of thermal 
decomposition products and enhance the thermal regeneration effect. 

However, despite its widespread application, thermal regeneration has limitations. 
The specific surface area and adsorption capacity of activated carbon are compromised 
to some extent after thermal regeneration. Furthermore, significant carbon loss, 
reduced mechanical strength, and high energy consumption hinder its further 
development. Therefore, it is imperative to develop more advanced and efficient 
thermal regeneration techniques. In recent years, microwave thermal regeneration has 
attracted research attention due to its advantages of selective and rapid heating 
[17,18,21–25]. In contrast to conventional heating, microwaves generate heat by 
causing polar molecules within the sample to undergo directional motion and friction 
within an alternating electric field [26]. Activated carbon, possessing a high dielectric 
constant, readily absorbs microwaves, enabling rapid heating under microwave 
irradiation [27]. Upon reaching a critical temperature, the adsorbate can then be 
desorbed, as shown in Figure 3a. By establishing a multiphase porous media model 
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that couples electromagnetic, heat transfer, and mass transfer (as shown in Figure 3b), 
researchers can study the characteristics of the microwave thermal regeneration 
process to optimize microwave reactors, potentially reducing energy consumption by 
41% and significantly shortening the regeneration time by 86% [28]. In addition, a 
novel ultrafast method combining high temperature shock and ultrasonic pickling has 
demonstrated exceptional efficiency in regenerating spent activated carbon, achieving 
a 104% regeneration rate in just 150 s [29]. Schematic illustration of the ultrafast 
regeneration of spent activated carbon as shown in Figure 4. Therefore, traditional 
thermal regeneration methods are no longer sufficient to meet the growing demand, 
high-efficiency and low-energy thermal regeneration technologies will be an 
important future development direction. 

 
Figure 3. Mechanism of microwave thermal regeneration of spent activated carbon (a); schematic diagram of a model 
of a multiphase porous media coupled with electromagnetism, heat and mass transfer and flowchart of the overall 
calculations (b) [28]. 
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Figure 4. Schematic illustration of the ultrafast regeneration of spent activated carbon (a), TG-DSC curves of spent 
activated carbon (b), XRD patterns of spent activated carbon and regenerated activated carbon (c); SEM images of 
spent activated carbon (d) and regenerated activated carbon (e) [29]. 

Regarding pollutant migration, as illustrated in Figure 5, the adsorption force on 
organic pollutants, primarily volatile organic compounds (VOCs), decreases 
significantly upon heating. Some VOCs become free and migrate to the surface of the 
activated carbon or directly volatilize. When assisted by a hot gas purge process, the 
organic pollutants are not only heated but also have increased contact with the gas 
phase, which promotes their migration into the gas phase. Subsequently, as the 
temperature further increases, large VOC molecules decompose into smaller organic 
molecules or inorganic substances such as CO2. Concurrently, some large VOC 
molecules are difficult to desorb and remain within the pores of the activated carbon 
as fixed carbon, leading to a decrease in the adsorption capacity and lifespan of the 
activated carbon. Furthermore, adsorbed VOCs can sometimes undergo coupling 
reactions; for example, phenol can lose a proton and transform into a phenoxy group, 
hindering its desorption. Finally, the VOCs and their decomposition products on the 
activated carbon surface come into contact with activating agents and undergo 
oxidation, further converting into non-polluting gases, mainly CO2 and H2O [30]. In 
summary, during the thermal regeneration process, the majority of pollutants 
decompose and convert into non-polluting substances, migrating into the 
environmental phase. However, it is worth noting that some VOCs or small organic 
molecules only migrate and escape from the surface of the activated carbon without 
complete decomposition, posing a continued environmental pollution risk. 
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Figure 5. Schematic illustration of pollutant migration pathways during the spent 
activated carbon thermal regeneration process. 

Although the migration and transformation mechanisms of simple pollutants like 
phenol are becoming clearer, the actual behavior of pollutants is much more complex. 
If we could clarify the specific relationship between thermal regeneration process 
conditions and pollutant migration patterns, calculate detailed relational expressions 
between the two, and summarize and develop theoretical systems based on 
engineering experience, it would greatly promote the development of spent activated 
carbon thermal regeneration processes and improve the efficiency ratio (regeneration 
efficiency per energy input). 

3.2. Pollutant Migration Behaviors in Solvent Regeneration 

Solvent regeneration is another widely used technique for regenerating spent 
activated carbon, offering advantages such as a simple process flow, minimal activated 
carbon loss after regeneration, and the potential for extracting pollutants for resource 
recovery [31–34]. Based on the reaction mechanism, solvent regeneration can be 
divided into reactive regeneration and extraction regeneration, or inorganic solvent 
regeneration and organic solvent regeneration. Reactive regeneration (inorganic 
solvent regeneration) utilizes inorganic solutions such as acids and bases to chemically 
react with pollutants adsorbed in the pores of spent activated carbon, transforming 
them into heavy metal ions or other substances readily soluble in the inorganic solution. 
This opens the adsorption pores of the activated carbon, restoring its adsorption 
capacity. Extraction regeneration (organic solvent regeneration) uses solutions with a 
high extraction capacity for the pollutants adsorbed onto the spent activated carbon 
(primarily organic pollutants), enhancing the desorption of these adsorbed pollutants 
from the pores of the spent activated carbon and promoting their migration into the 
liquid phase, thereby restoring the activated carbon’s adsorption capacity. A novel 
modified supercritical CO2 (scCO2) extraction method has been developed for the 
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regeneration of spent activated carbon. By incorporating organic solvents and acid 
modifiers, this procedure achieved >99% perfluorooctanoic acid (PFOA) desorption 
after a 60 min treatment in a continuous flow reactor [35]. Figure 6 illustrates potential 
PFOA desorption pathways. Route I is facilitated by the high dielectric permittivity of 
scCO2, which enhances proton availability from PFOA dissociation. Route II involves 
the interaction of CO2 molecules with water retained in the spent activated carbon 
pores, leading to bicarbonate ion formation. Route III is predicated on disrupting the 
electrostatic interactions between spent activated carbon and per- and polyfluoroalkyl 
substance (PFAS). 

 
Figure 6. PFOA desorption routes from spent activated carbon, blue-porous water, and green-scCO2. Route I-in pure 
scCO2, high dielectric permittivity and subsequent proton association lead to partial PFOA protonation; Route II-in pure 
scCO2, bicarbonate ions formed from CO2 interaction with retained water compete with PFOA for adsorption sites; 
Route III-in scCO2/MeOH/H2SO4 (i) competition of the sulfate ion for spent activated carbon active site and (ii) PFOA 
protonation [35]. 

However, solvent regeneration methods also have certain drawbacks. Studies 
have shown that residual air inside the pores of the activated carbon hinders the contact 
between the regeneration solution and the spent activated carbon, reducing the 
material reaction and migration between the two phases. On the other hand, when 
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using highly corrosive inorganic regeneration solutions such as strong acids and bases, 
it can also cause the micropores inside the activated carbon to shrink or collapse, 
reducing the specific surface area and permanently decreasing the adsorption capacity 
and efficiency of the activated carbon. In summary, existing solvent regeneration 
methods also have significant limitations and cannot meet current application demands. 
Exploring more superior activated carbon regeneration technologies is necessary. 

The solvent regeneration process exhibits good regeneration effectiveness for 
activated carbon adsorbed with both organic pollutants like VOCs and inorganic 
pollutants, such as heavy metals. During the regeneration process, heavy metal 
pollutants react with the solution (e.g., acidic solution), transforming into metal ions 
and migrating into the liquid phase of the solution. For organic pollutants like VOCs, 
they can also react with the solution or dissolve into the solution phase, thereby 
achieving the migration of pollutants from the activated carbon surface to the solution 
phase. 

However, the pollutants do not stabilize or decompose to eliminate pollution once 
they enter the solution phase. Instead, they form concentrated waste liquids with high 
pollutant concentrations. The treatment of concentrated waste liquids generated during 
spent activated carbon regeneration is a critical aspect of ensuring the overall 
sustainability of activated carbon technology. Membrane separation processes and 
advanced oxidation processes offer promising solutions for managing these complex 
waste streams, and integrated approaches hold the greatest potential for achieving 
effective and cost-efficient treatment. Future research should focus on optimizing 
these treatment strategies and developing novel technologies for minimizing the 
generation of concentrated waste liquid. 

3.3. Pollutant Migration Behaviors in Electrochemical 

Regeneration 

Electrochemical regeneration is a promising emerging technology for 
regenerating spent activated carbon [36–41]. This method involves placing the spent 
activated carbon in a specific liquid, and under the influence of an electric current, 
redox reactions, acid-base neutralization, and other processes alter the adsorption-
desorption equilibrium of the pollutants. This separates the harmful substances 
attached to the activated carbon, thus achieving regeneration [42,43]. Studies on the 
regeneration mechanism of spent activated carbon suggest that applying an electric 
current across an exhausted bed of spent activated carbon leads to two main 
regenerative processes [44]. First, enhanced desorption commences from the spent 
activated carbon surface, as illustrated in Figure 7a–c, resulting in an adsorbent free 
of contaminant species. Second, electrochemical reactions occurring at the electrodes 
and polarized spent activated carbon particles stimulate the degradation of 
contaminant species, completely removing them from the system, as shown in Figure 
7d. An ideal electrochemical regenerative process would promote both mechanisms, 
thereby avoiding further treatment of the desorbed compounds. 
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Figure 7. Regenerative mechanisms involved in the electrochemical regeneration of spent activated carbon: enhanced 
desorption due to changes in local pH (a); enhanced desorption due to local changes in salinity concentration, or 
adsorbate reacting with ionized species to produce a less readily adsorbed compound (b); electro desorption whereby 
species are repelled from the charged spent activated carbon surface (c); oxidation/degradation reactions occurring at 
either the electrodes or polarized spent activated carbon (d) particles [44]. 

As early as the 1990s, a simple current of 50 mA could restore more than 90% of 
the adsorption capacity of spent activated carbon saturated with phenol [45]. After 
decades of development, the degradation rate and effectiveness have been further 
improved. For example, when using sodium chloride solution to electrochemically 
regenerate activated carbon fiber felt loaded with potassium dichromate, the 
regeneration rate can reach up to 100% [46]. This indicates that electrochemical 
regeneration of spent activated carbon has the advantage of high regeneration 
efficiency. 

The electrochemical regeneration process is influenced by various factors. 
Studies have shown that the magnitude of the current affects the change in Coulombic 
interactions between the pollutants and spent activated carbon. A certain current can 
enhance the oxidation efficiency of the pollutants, but a stronger current may also lead 
to side reactions such as hydrogen evolution. The regeneration efficiency differs 
between the electrolyte and the electrode surface; in related studies [47], the 
regeneration efficiency on the electrode surface was approximately 20% higher. The 
material properties of the cathode and anode also affect the electrochemical 
regeneration process. For example, inert electrodes such as lead dioxide have higher 
physical and chemical stability, making them less prone to side reactions [48]. In 
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addition, the properties of the electrolyte, the type of pollutants, and other 
characteristics also affect the effectiveness of electrochemical regeneration technology. 

Regarding pollutant migration behaviors, in the aforementioned electrochemical 
process, the pollutants adsorbed by the spent activated carbon are subjected to 
Coulombic forces, and their adsorption-desorption equilibrium is disrupted. This 
causes them to migrate from the solid phase of the spent activated carbon to the liquid 
phase of the desorption solution [49]. However, in traditional electrochemical 
regeneration processes, this pollutant migration process is not accompanied by 
pollutant transformation, and the hazardous nature of the pollutants remains. Therefore, 
combined electrochemical and advanced oxidation technologies have emerged, 
leading to the development of integrated technologies such as electro-Fenton 
regeneration and electro-activated persulfate regeneration. Zhan et al. used 
electrochemical technology to regenerate spent activated carbon adsorbed with p-
nitrophenol, achieving 98% regeneration efficiency and effectively mineralizing the 
intermediate products [50]. The electro-permanganate system presents a promising 
activated carbon regeneration strategy, characterized by a 93.11% reduction in energy 
consumption compared to electrochemical regeneration and a high regeneration 
efficiency [51]. Ding et al. used electro-activated persulfate oxidation technology to 
regenerate spent activated carbon adsorbed with phenol, achieving complete 
mineralization of 81.9% of the pollutants [52]. Liu et al. elucidated the mechanism of 
electro (E)-activated carbon fiber (ACF)-peroxydisulfate (PDS), as shown in Figure 8. 
The E-ACF-PDS process achieves remarkable carbamazepine removal from aqueous 
solution through the synergistic mechanisms of pollutant adsorption and in situ 
generation of active radicals on the ACF cathode. The electron-rich environment at 
the cathode minimizes oxidative damage to the ACF by sulfate radicals, hydroxyl 
radicals, and PDS, while simultaneously promoting continuous sulfate radical 
production, independent of the electron-donating ability of the activated carbon itself 
[53]. 

 
Figure 8. Proposed mechanism in E-ACF-PDS process [53]. 
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In comparison, electrochemical technologies combined with advanced oxidation 
processes are relatively expensive. Although they achieve spent activated carbon 
regeneration, the large number of free radicals generated are not fully utilized, 
resulting in a low efficiency ratio. Further leveraging the role of advanced oxidation 
technologies is key to improving the efficiency ratio. On this basis, if the various 
wastewaters generated in co-treatment engineering are also considered for synergistic 
treatment, their application will be even more widespread. 

4. Future Development and Prospects 

Improving the efficiency ratio is one of the most important development 
directions for spent activated carbon regeneration. In thermal regeneration, it is 
necessary to clarify the specific relationship between thermal regeneration process 
conditions and pollutant migration patterns, and to summarize and develop theoretical 
systems based on engineering experience to improve the efficiency ratio. In solvent 
regeneration, the treatment and utilization of concentrated waste liquid byproducts is 
key to improving the efficiency ratio. Electrochemical regeneration is often combined 
with technologies such as advanced oxidation processes. Simultaneously regenerating 
spent activated carbon while considering the synergistic treatment of self-produced 
wastewater from the engineering process may be an important area of research in the 
future. 

The complexity of spent activated carbon regeneration processes, involving 
numerous interacting parameters, presents a significant challenge for traditional 
optimization methods. These methods are often time-consuming, resource-intensive, 
and may fail to identify the global optimum operating conditions. Artificial 
intelligence, particularly machine learning algorithms, offers a powerful alternative 
for optimizing these complex processes. The application of artificial intelligence to 
optimize regeneration parameters will be a crucial area of investigation in the field. 

The effectiveness of many regeneration methods, particularly chemical and 
thermal processes, can be significantly enhanced by the incorporation of catalysts. 
Conventional catalysts, however, may suffer from limitations such as high cost, 
limited activity, and environmental toxicity. Emerging classes of catalysts, such as 
single-atom catalysts, offer significant potential for overcoming these limitations and 
achieving more efficient and sustainable pollutant degradation during spent activated 
carbon regeneration. Therefore, the exploration and development of novel catalytic 
materials, especially single-atom catalysts, for enhanced pollutant degradation during 
spent activated carbon regeneration is an important future development. 
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