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Abstract: A unified and selective prebiotic synthesis to access N9 purine and N1 pyrimidine 

ribonucleotides has been proposed. Metal phosphide in meteorite and a Fe(III)-hydrazine/thiol 

couple could serve as the key reagents that furnish the desired transformation. The target 

nucleotides, which are traditionally difficult to obtain via the direct ribose-nucleobase 

condensation, are expected to be selectively produced via an oxidation-reduction condensation 

process. A pathway utilizing P(III) derived from phosphide minerals is also suggested, which 

circumvents several formidable issues in the conventional phosphorylation routes. 
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1. Introduction 

The RNA World has been a mainstream hypothesis in the origins of life 
community [1] and continues to evolve [2,3]. However, the early-stage chemistry of 
this hypothesis is still challenged by several unsolved problems [4,5]. In particular, the 
reactivity and selectivity of nucleosidation, the mobilization of phosphorus, and the 
availability of phosphorus species able to form organophosphates have been the major 
stumbling blocks [6]. In the structure of an extant nucleoside, it is intriguing that the 
glycosidic bond links ribose with the least nucleophilic nitrogen of the nucleobase (N9 
of purine and N1 of pyrimidine). The exocyclic amino groups of adenine, guanine and 
cytosine are the most reactive but undesired sites for ribosylation. Because of that, the 
coupling of ribose and nucleobase to afford canonical nucleosides has been 
synthetically troublesome [7]. Stepwise routes had to be developed to ensure the 
correct regioselectivity [8–11].  

However, the order of reactivity of different nucleophiles can be altered by using 
an alternative condensation approach. In water in general, pH and coordination 
specific to metallic species are levers to modulate this reactivity. For example, a 
nucleophile with a lower pKa might have an unusual superiority to the less acidic ones, 
under the Mitsunobu conditions [12], which activate the alcoholic substrate for 
nucleophilic substitution. Although the Mitsunobu reaction has hardly been 
documented in prebiotic chemistry, it has been applied to construct glycosidic bonds 
in routine organic synthesis [13]. This prompts us to envisage a possible prebiotic 
variant of the oxidation-reduction condensation that could yield nucleosides with the 
desired regioselectivity.  
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2. Results and Discussion 

Schreibersite (1), in the primary composition of (Fe,Ni)3P, is speculated to be a 
key extraterrestrial source of phosphorus (Figure 1) [14]. For the utilization of 
phosphorus, most existing routes suggest the oxidation of phosphonic acid that derived 
from schreibersite, to P(V) (preferably phosphoric acid) [15]. Schreibersite has been 
verified as an efficacious reagent for the phosphorylation of nucleosides [16]. 
However, the strong tendency of binding divalent cations forbids the existence of 
soluble phosphate and the phosphorylation of nucleosides [17]. To avoid that, others 
suggest the direct utilization of P(III) to form a nucleoside phosphite, and the H-
phosphonate diester linkage is later oxidized to the phosphodiester linkage by Fe3+ 
[17]. Schreibersite is also a geochemical source of activated, water-soluble phosphate 
reagents such as diamidophosphate (DAP) by reacting with NH3 in water [18,19], 
since water might have already existed on Earth about 4.4 billion years ago [20].  

 

Figure 1. Schreibersite and the possibly partially hydrolyzed surface. 

Previous chemical syntheses of nucleotides were mainly achieved through 
nucleoside formation followed by subsequent phosphorylation, or nucleosidation of 
pre-phosphorylated ribose, or via a stepwise route involving smaller building blocks. 
Pasek investigated the phosphorylation of nucleosides using meteorite as a phosphorus 
source under basic conditions [16]. Carell completed the prebiotic synthesis of 
ribonucleotides in the presence of struvite [21]. Kim and Benner developed a 
regioselective synthesis of nucleotide via the nucleophilic attack by purine’s N9 or 
pyrimidine’s N1 to ribose-1′,2′-cyclic phosphate [22]. The pre-activated ribose was 
prepared under conditions such as the presence of amidotriphosphate derived from 
cyclic trimetaphosphate [23]. Cronin studied the promotion effect of amino acids to 
the nucleosidation of the pre-phosphorylated ribose [24]. Furukawa reported the 
synthesis of ribose 5′-phosphate in the presence of urea and borate [25]. Sutherland 
constructed the ribose skeleton via the addition of 2-amino-oxazole, glyceraldehyde 
and cyanoacetylene, followed by treating anhydronucleoside with sodium dihydrogen 
phosphate to generate 2′,3′-cyclic pyrimidine monophosphate [9]. These are 
undoubtedly momentous examples which demonstrate high prebiotic relevance. Here, 
we are curious to propose a route to access nucleotide, with most synthetic steps 
occurring on the same mineral surface. According to Pasek’s research, the hydrolysis 
of Fe3P affords Fe3O4 and H3PO3, with hydrogen gas emission [14] (Figure 1). 
However, the solubility of schreibersite in water is limited, so its surface might first 
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undergo slow and partial corrosion [26,27]. We would expect that the surficial 
hydrolysis could then give an oxygenated structure like Fe–O–P, with P facing outward. 
Notably, free phosphorous acid does not favor the trihydroxy form (as P(OH)3), which 
bears lone pair electrons. Instead, it mainly exists as the tetrahedral, dihydroxy form 
without a lone pair (as HP(O)(OH)2). Schreibersite tends to hydrolyze first to a 
phosphite radical (•PO3

2– (2), with a small part dimerized to afford P2O6
4– (3)), which 

disproportionates to produce PO3
– (4) and PO3

3– (5) [28,29]. Among these phosphorus 
species, PO3

3– (5) may be directly bound to the mineral surface rich in Fe3+ (6). 
Consequently, the immobilized PO3

3– (6) might be a feasible metastable product on 
the schreibersite surface. PO3

– (4) might as well be bound to Fe3+, although such a P(V) 
reagent in a redox-neutral Mitsunobu reaction is not as robust as a phosphine or 
phosphite [30]. The P(OFe)3 moiety on the schreibersite surface can be regarded as a 
protected version of P(OH)3, ensuring its lone pair to be reactive like a phosphite [31]. 
By contrast with the pre-phosphorylation of ribose, this route obtains the available 
phosphorus source from schreibersite via simple corrosion. Notably, in contemporary 
synthesis of nucleic acids, the ribose-phosphate linkage is routinely constructed by the 
introduction of P(III) group followed by an oxidation process [17,32]. 

The formation of pyrimidine and purine could be traced to key small molecules 
such as HCN, NH3 and CO [33–35]. Nucleobases have also been found in meteorites 
[36]. Our lab has demonstrated that ribose can be selectively enriched and stabilized 
on metal-containing minerals out of a complex formose mixture [37]. We also recently 
succeeded in the selective synthesis of N9 purine nucleoside by using an insoluble 
mineral as a heterogeneous catalyst [38]. These discoveries, however, are independent 
and complementary to this discussion. Georgelin and co-workers showed that metal 
ions on a solid support (e.g., silica) favor the adsorption of furanose, whereas pyranose 
remains the primary isomer without the addition of metal [39]. In alignment with that, 
all ribose structures in this route are presented as the furanose form. When exposed to 
ribose (7), one of the P–OFe bonds is likely to be replaced by P–Oribose (8). We would 
expect the 2′-OH to be preferably phosphonated, since the product can be stabilized 
by a maximal number of intramolecular hydrogen bonds (Figure 2). The most 
phosphonated ribofuranose will be the α-anomer since its 1′-OH is in close proximity 
to maximize the number of hydrogen bonds (9). This is analogous to the confirmed 
selective binding of α-ribofuranose to metal cation over the β-anomer, since the α-
anomer has three –OH groups facing the same direction [40]. 
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Figure 2. Binding of ribose to the surficially hydrolyzed schreibersite. 

A typical Mitsunobu-type reaction requires a diazo reagent to activate the 
phosphine or phosphite. The formation of hydrazine and carbohydrazide on the 
primitive Earth has been studied [41]. Hydrazine can be oxidized to diazo compound 
in situ by Fe3+ [42], which is produced concomitantly during the partial hydrolysis of 
schreibersite. In a mechanistically similar oxidation-reduction condensation 
developed by Mukaiyama, a phosphine is activated by 2,2′-dipyridyldisulfide [43,44]. 
This transformation is likely to work with the disulfide of 2-thiouracil (14), a 
prebiotically relevant nucleobase [45]. As the byproduct of the condensation, the thiol 
can be oxidized back to the disulfide by Fe3+ [46]. Around the schreibersite surface, 
Fe3+ could be much in excess as a stoichiometric oxidant, as compared with the amount 
of hydrazine or thiol. We would not assert that diazo and disulfide are the most potent 
reagents, as any prebiotically available, reductive molecules that can activate P(III) 
might be equally effective.  

With these prerequisites, the ribose-P(III)-schreibersite complex (9) will 
subsequently react with the diazo reagent (12) or disulfide (14) to form a tetrahedral, 
cationic intermediate (10a or 10b, Figure 3). This step also triggers the deprotonation 
of the nucleobase, during which only the sufficiently acidic protons will be removed 
to give the anionic nucleobase (16, 17, 22 and 23 in Figure 4). As a result, the undesired, 
more nucleophilic reaction sites of the nucleobases are ruled out, since 4-NH2 of 
cytosine, 6-NH2 of adenine, and 2-NH2 of guanine are much less prone to 
deprotonation. Next, the adjacent 1′-OH attacks the positively charged P(V) 
intermediate 10a to give the cyclic cation 11, and kicks out the hydrazine (13), which 
can be oxidized back to 12 by Fe3+. The selective participation of 1′-OH is due to its 
higher acidity than the rest of hydroxyl groups, so that the protonation and leaving of 
the hydrazide would be more feasible. Alternatively, in the Mukaiyama-type route, 2-
thiouracil (15) can be converted to the disulfide (14) via Fe(III) oxidation.  
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Figure 3. Formation of the cationic P(V) intermediate. 

The cationic species 11 should be adequately electrophilic to react with the 
deprotonated nucleobases, at N1 of cytosine and uracil, and N9 of adenine and guanine 
(Figure 4). In principle, N3 of cytosine and uracil should be comparably acidic as N1, 
but it is more hindered to react. It can be expected that the nucleosidation step gives 
exclusively β-furanoside-2′-phosphate of all genetic alphabets (18, 19, 24 and 25). 
Owing to the highly electrophilic nature of the positively charged starting material (11), 
this nucleosidation reaction would presumably be more facile than those employing 
an electronically neutral intermediate. The resulting 2′-phosphate could then undergo 
transesterification to afford 2′,3′-cyclic phosphate (20, 21, 26 and 27) as the activated 
form of ribonucleotides, which could oligomerize toward the formation of an RNA 
strand. It was reported that minerals could catalyze the polymerization of nucleotides 
to form short-chain oligomers [47]. However, understanding how exactly non-
enzymatic polymerization occurs still remains an outstanding challenge [6,48].  
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Figure 4. Substitution by nucleobase and transesterification. 

3. Conclusion 

In summary, we have presented a hypothetical route of a phosphide mineral-based, 
unified synthesis of ribonucleotide, via a prebiotic version of the oxidation-reduction 
condensation reaction. The early Earth might experience impacts from both 
carbonaceous chondrites and metallic meteorites, which provided organic substrates 
and phosphide minerals respectively. Their collision in close proximity created 
conditions for the proposed chemical reactions, which did not necessarily happen on 
the meteorite but on Earth. Overall, the proposed route is expected to answer four 
levels of questions: (1) Paradox of the canonical glycosidic bond and the poor 
reactivity of pyrimidine’s N1 and purine’s N9; (2) Direct utilization of the phosphorus 
element from a phosphide mineral; (3) Oxidation path from P(III) to P(V); (4) 
Preference of the β-configuration of canonical ribonucleosides. We hope this route 
would inspire a plausible solution to the challenges of the nucleosidation and 
phosphorylation problems for the early-stage chemistry of the RNA World.  
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